Solutions of the Open Problems in Antimagic Valuations

${ }^{1}$ S.Vimala, ${ }^{2}$ A.Nagarani
${ }^{1,2}$ Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamilnadu, India

Abstract

A connected graph G is said to be (a, d)-antimagic, for some positive integers a and d, if it's edges admit a labeling by the integers $1,2, \ldots \ldots .|\mathrm{E}(\mathrm{G})|$ such that the induced vertex labels consist of an arithmetic progression with the first term a and the common difference d. For $n \geq 8, n \equiv 0(\bmod 4)$, the generalized Petersen graph $P(n, 2)$ has a $\left(\frac{3 n}{2}+3,3\right)$-antimagic labeling. In

 this paper to prove the following conditions on the generalized Peterson graph.(i) If n is even, $n \geq 6$ and $2 \leq k \leq n / 2-1$. Then the generalized Petersen graph $P(n, k)$ is $\left(\frac{3 n}{2}+3,3\right)$ - antimagic.
(ii) For $n \equiv 1(\bmod 2), n \geq 7$ and $1 \leq k \leq \frac{n-1}{2}$, the generalized Petersen graph $P(n, k)$ has a $\left(\frac{n+7}{2}, 4\right)$ - antimagic labeling.
(iii) For odd $n, n \geq 3$, every generalized Petersen graph $P(n, 2)$ has a $\left(\frac{9 n+5}{2}, 2\right)$ edge-antimagic total labeling.
(iv) For odd $n, n \geq 5$, every generalized Petersen graph $P(n, 2)$ has a super $\left(\frac{15 n+5}{2}, 1\right)$ vertex antimagic total labeling.

Keywords: Antimagic Valuations, labeling by the integers, generalized Peterson graph.

1. INTRODUCTION

The graphs considered as finite, undirected and simple. The vertex set of a graph G will be denoted by $V(G)(E(G))$, respectively. The weight $w(v)$ of a vertex $v \in V(G)$ under an edge labeling f is the sum of values $f(e)$ assigned to all edges incident to a given vertex v. Hartsfield and Ringle[9] introduced the concept of an antimagic graph. An antimagic graph G is a graph whose edges can be labeled with the integers $1,2,3, \ldots \ldots,|\mathrm{E}(\mathrm{G})|$ so that the sum of the labels at any given vertex is different from the sum of the labels at any other vertex, that is, no two vertices receive the same weight.Alspach [1] The Classification of Hamiltonian Generalized Petersen Graphs.The concept of an (a,d)-antimagic labelings was introduced by Bodendiek and Walther[8] in 1993.Miller and Baca [4] prove that the generalized Petersen graph $\mathrm{P}(\mathrm{n}, 2)$ is ($(3 n+6) / 2,3)$ - antimagic for $n \equiv 0(\bmod 4)$. Jirimutu and Wang proved that $P(n, 2)$ is $((5 n+5) / 2,2)$-antimagic for $n \equiv 3$ (mod 4) and $n \geq 7$.Baca, Bertault, MacDougall, Miller, Simanjuntak, and Slamin[162] introduced the notion of (a, d)-Vertex- antimagic total labeling in 2000. In [11] Sugeng and Silaban show : the disjoint union of any number of odd cycles of orders $n_{1}, n_{2}, \ldots, n_{t}$, each at least 5 , has a super $\left(3\left(n_{1}+n_{2}+\ldots .+n_{t}\right)+2,1\right)$-vertex-antimagic total labeling; for any odd positive integer t, the disjoint union of t copies of the generalized Petersen graph $P(n, 1)$ has a super ($10 t+2$)n$[\mathrm{n} / 2]+2,1)$ - vertex-antimagic total labeling ; and for any odd positive integers t and $\mathrm{n}(\mathrm{n} \geq 3)$, the disjoint union of t copies of the generalized Petersen graph $\mathrm{P}(\mathrm{n}, 2)$ has a super $(21 \mathrm{tn}+5) / 2,1)$ - vertex-antimagic total labeling.

2. PRELIMINARIES

Let G be a simple graph with order p and size q. A function $f: V(G) \rightarrow\{0,1 \ldots, q\}$ is called a graceful labeling if
(i) f is one-to-one.
(ii) The edges receive all the label from 1 to q , where the label of an edge is computed to be the absolute value of the difference between the vertex label at its ends.
Let G be a graph with q edges. G is said to be magic if the edges of G can be labeled by the numbers $1,2,3, \ldots$, q so that the sum of the labels of all edges incident with any vertex is the same.
The graphs considered here will be finite, undirected and simple. The vertex set of a graph G will be denoted by $\mathrm{V}(\mathrm{G})$ $(\mathrm{E}(\mathrm{G}))$, respectively. The weight $\mathrm{w}(\mathrm{v})$ of a vertex $v \in \mathrm{~V}(\mathrm{G})$ under an edge labeling f is the sum of values $f(e)$ assigned to all edges incident to a given vertex v.A connected graph $G=(\mathrm{V}(\mathrm{G}))$ is said to be (a,d)-antimagic if there exist positive integers a, d and a bijection $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\left\{\mathbf{1}_{2}, \ldots,|E(G)|\right\}$ such that the induced mapping

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (48-52), Month: October 2015 - March 2016, Available at: www.researchpublish.com
$\mathrm{g}_{\mathrm{f}}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{W}$ is also a bijection, where
$\mathrm{W}=\{\mathrm{w}(\mathrm{v}): \mathrm{v} \in \mathrm{V}(\mathrm{G})\}=\{\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \ldots \ldots \mathrm{a}+(|V(G)|-1) \mathrm{d}\}$
is the set of the weights of vertices
if $G=(V, E)$ is (a, d)-antimagic and $f: E(G) \rightarrow\{1,2, \ldots,|E(G)|\}$ is a corresponding bijective mapping of G then f is said to be an(a, d)-antimagic labeling of G.

$$
\begin{align*}
& \sum_{e \in E(P(n, k))} \rho(e)=\frac{3 n(3 n+1)}{2}, \tag{1}\\
& \sum_{v \in V(P(n, k))} w(v)=2 \mathrm{na}+\mathrm{nd}(2 \mathrm{n}-1) . \tag{2}
\end{align*}
$$

Clearly, the following equations (1), (2) hold
(3)
$2 \quad \sum_{s \in E(P(n, k)} \rho(\mathrm{e})=\sum_{v \in V(P(n, k))} w(v)$
(4). $3 n(3 n+1)=2 n a+n d(2 n-1)$.

From the linear Diophantine equation (2) we have $\mathrm{d}=\frac{3(3 n+1)-2 a}{2 n-1}$
The minimal value of weight which can be assigned to a vertex of degree three is $a=6$ Thus we get the upper bound on the value d, i.e., $0<d<\frac{9}{2}$. This implies that
(5) $\ldots \ldots \ldots$ if $n \equiv 0(\bmod 2)$, then d is necessarily odd and the equation (2) has exactly the two different solutions $(\mathrm{a}, \mathrm{d})=\left(\frac{7 n+4}{2}, 1\right)$ or $(\mathrm{a}, \mathrm{d})=\left(\frac{3 n}{2}+3,3\right)$, respectively and
(6) $\ldots \ldots \ldots$ if $n \equiv 1(\bmod 2)$, then d is necessarily even and the equation (2) has exactly the two different solutions (a, d) $=\left(\frac{5 n+5}{2}, 2\right)$ or $\left.(\mathrm{a}, \mathrm{d})=\left(\frac{n+7}{2}, 4\right), 2\right)$ or , respectively.
Theorem 1. For $n \geq 8, n \equiv 0(\bmod 4)$, the generalized Petersen graph $P(n, 2)$ has a $\left(\frac{3 n}{2}+3,3\right)$-antimagic labeling .[11]

3. MAIN RESULT

In view of Theorem 1 and the result that $P(n, k)$ is $((7 n+4) / 2,1)$-antimagic if $n \geq 4$ is even and $k \leq n / 2-1$. The conjecture that the generalized Petersen graph $P(n, k)$ is (a,d)- antimagic for all feasible values of a and d. In this paper solved three conjectures and also open problem of [11].
Conjecture 1 If n is even, $\mathrm{n} \geq 6$ and $2 \leq \mathrm{k} \leq \mathrm{n} / 2-1$. Then the generalized Petersen graph $\mathrm{P}(\mathrm{n}, \mathrm{k})$ is $\left(\frac{3 n}{2}+3,3\right)$ antimagic.

Proof:

Define the edge labeling f of $\mathrm{P}(\mathrm{n}, \mathrm{k}), \mathrm{n} \equiv 0(\bmod 4)$, as follows:
$\mathrm{f}\left(\mathrm{xy}_{\mathrm{i}}\right)=\left\{\begin{array}{rr}\frac{4 n+1-i}{2} & \text { if } 1 \leq n \leq n-1 \text { is odd, } i \neq 0 . \\ \frac{n^{2}}{2}+1 & \text { if } i=2, \\ \frac{5 n}{2}-1 & \mathrm{~s} \quad \text { if } \quad i \leq 3, \\ \frac{3 n+2-i}{2} & \end{array}\right.$
$\mathrm{f}\left(\mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}+2}\right)= \begin{cases}\frac{3 n-1}{} \quad \text { if } i=1, \\ \frac{4 n+i+1}{2} & \text { if } i \equiv 3(\bmod 4), i \geq 3, \\ \frac{5 n+i+1}{2} & \text { if } i \equiv 1(\bmod 4), i \geq 5, \\ \frac{3 n+2 i}{2} & \text { if } \quad i \equiv 0(\bmod 2)\end{cases}$
It is easy to verify that the labeling f uses each integer $1,2, \ldots \ldots, 3 n$ exactly once and this implies that the labeling f is a bijection from the edge set $\mathrm{E}\left(\mathrm{P}(\mathrm{n}, \mathrm{k})\right.$ to the set $\{1,2, \ldots, 3 \mathrm{n}\}$. Let us denote the weight (under an labeling f) of vertices x_{i} and y_{i} of $P(n, 2)$ by
$\mathrm{w}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}+1)}+\mathrm{f}\left(\mathrm{y}_{\mathrm{i}-1} \mathrm{y}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right) \quad\right.$ for $1 \leq \mathrm{i} \leq \mathrm{n}$,
$\mathrm{w}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+2}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{n}+\mathrm{i}-2} \mathrm{x}_{\mathrm{i}}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
with indices taken modulo n.
The weight of vertices of $\mathrm{P}(\mathrm{n}, \mathrm{k})$ under the edge labeling f constitue the sets
$\mathrm{W}_{1}=\left\{\mathrm{w}\left(\mathrm{y}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \quad=\left\{\frac{3 n}{2}+3 \mathrm{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and
$\mathrm{W}_{2}=\left\{\mathrm{w}\left(\mathrm{x}_{\mathrm{i}}\right) \quad: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \quad=\left\{\frac{9 n}{2}+3 \mathrm{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
We can see that each vertex of $\mathrm{P}(\mathrm{n}, \mathrm{k})$ receives exactly one label of weight from $\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ and each number from $\mathrm{W}_{1} \cup W_{2}$ is used exactly once as a label of weight and further that the set $W=W_{1} \cup W_{2}=\{a, a+d, a+2 d, \ldots, a+(2 n-1) d\}$, where $\mathrm{a}=\frac{3 n}{2}+3$ and $\mathrm{d}=3$ and finally that the Induced mapping $\mathrm{g}_{\mathrm{f}}: \mathrm{V}(\mathrm{P}(\mathrm{n}, \mathrm{k})) \rightarrow \mathrm{W}$ is bijective.

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (48-52), Month: October 2015 - March 2016, Available at: www.researchpublish.com
Conjecture 2. If n is odd, $\mathrm{n} \geq 5$ and $2 \leq \mathrm{k} \leq \frac{n-1}{2}$, then the generalized Petersen graph $\mathrm{P}(\mathrm{n}, \mathrm{k})$ is $\left(\frac{5 n+5}{2}, 2\right)$ - antimagic. proof: Define the edge labeling f of $\mathrm{P}(\mathrm{n}, \mathrm{k}), \mathrm{n} \equiv 1(\bmod 2)$, as follows
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)= \begin{cases}\frac{(2+i)}{2} & \text { for } \\ \frac{n+2+i}{2} & \text { for } \\ \frac{1}{2} \equiv \mathrm{O}(\bmod 2),\end{cases}$

It is easy to verify that the labeling f uses each integer $1,2, \ldots \ldots, 3 \mathrm{n}$ exactly once and this implies that the labeling f is bijection from the edge set $\mathrm{E}(\mathrm{P}(\mathrm{n}, \mathrm{k})$) to the set $\{1,2, \ldots \ldots, 3 \mathrm{n}\}$. Let us denote the weights (under an edge labeling f) of vertices x_{i} and y_{i} of $P(n, k)$ by $w\left(y_{i}\right)=f\left(y_{i} y_{i+1}\right)+f\left(y_{i-1} y_{i}\right)+f\left(x_{i} y_{i}\right) \quad$ for $1 \leq i \leq n$,
$\mathrm{w}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+2}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right) \quad+\mathrm{f}\left(\mathrm{x}_{\mathrm{n}+\mathrm{i}-2} \mathrm{x}_{\mathrm{i}}\right) \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
with indices taken modulo n.
The weight of vertices of $\mathrm{P}(\mathrm{n}, \mathrm{k})$ under the edge labeling f constitute the sets
$\mathrm{W}_{1}=\left\{\mathrm{w}\left(\mathrm{y}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}=\left\{\frac{5 n}{2}+5 \mathrm{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and
$\mathrm{W}_{2}=\left\{\mathrm{w}\left(\mathrm{x}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}=\left\{\frac{10 \mathrm{~m}}{2}+5 \mathrm{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
We can see that each vertex of $\mathrm{P}(\mathrm{n}, \mathrm{k})$ receives exactly one label of weight from $\mathrm{W}_{1} \mathrm{UW}_{2}$ and each number from $\mathrm{W}_{1} \mathrm{UW}_{2}$ is used exactly once as a label of weigt and further that the set $W=W_{1} \cup W_{2}=\{a, a+d, a+2 d, \ldots, a+(2 n-1) d\}$, where $\mathrm{a}=\frac{5 n}{2}+5$ and $\mathrm{d}=2$ and finally that the induced mapping $\mathrm{g}_{\mathrm{f}}: \mathrm{V}(\mathrm{P}(\mathrm{N}, \mathrm{K})) \rightarrow \mathrm{W}$ is bijective.
Conjecture 3
For $\mathrm{n} \equiv 1(\bmod 2), \mathrm{n} \geq 7$ and $1 \leq \mathrm{k} \leq \frac{n-1}{2}$, the generalized Petersen graph $\mathrm{P}(\mathrm{n}, \mathrm{k})$ has a $\left(\frac{n+7}{2}, 4\right)$ - antimagic labeling.

Proof:

Define the edge labeling f of $\mathrm{P}(\mathrm{n}, \mathrm{k}), \mathrm{n} \equiv 1(\bmod 2)$, as follows:
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)=\left\{\begin{array}{l}\frac{(13 n-\mathrm{i})}{4} \\ \frac{(17 n+2+i)}{4} \\ \frac{16 n+2+i}{4}\end{array}\right.$
for $\quad i \equiv 1(\bmod 2)$,
$\mathrm{f}\left(\mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}+1}\right)=\left\{\begin{array}{c}\frac{4}{(18 \mathrm{n}+3+\mathrm{i})} \\ \frac{(17 n+3+i)}{2} \\ \frac{(20 n+3+i)}{2}\end{array}\right.$
for $\quad i \equiv 1(\bmod 2)$.
for $i \equiv 3(\bmod 2)$.
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}+2}\right)=\left\{\begin{array}{lr}\frac{(17 n-3-i)}{2} & \begin{array}{r}\text { for } i \equiv 0(\bmod 2), \\ \frac{(15 n-3-i)}{2}\end{array} \text { for } \quad i \equiv 1(\bmod 2), i \neq n-2, \\ \frac{(17 n+1)}{2} & \text { for } \quad i=n-2,\end{array}\right.$
It is easy to verify that the labeling f uses each interger $1,2, \ldots, 3 n$ exactly once and this implies that the labeling f is a bijection from the edge set $\mathrm{E}(\mathrm{P}(\mathrm{n}, \mathrm{k}))$ to the set $\{1,2, \ldots, 3 \mathrm{n}\}$. Let us denote the weight (under an edge labeling f) of vertices x_{i} and y_{i} of $P(n, k)$ by
$\mathrm{w}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{y}_{\mathrm{i}-1} \mathrm{y}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{n}$,
$\mathrm{w}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+2}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{n}+\mathrm{i}-2} \mathrm{x}_{\mathrm{i}}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{n}$,
with indices taken modulo n.
The weight of vertices of $\mathrm{P}(\mathrm{n}, \mathrm{k})$ under the edge labeling f constitute the sets
$\mathrm{W}_{1}=\left\{\mathrm{w}\left(\mathrm{y}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}=\left\{\frac{n}{2}+7 \mathrm{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and
$\mathrm{W}_{2}=\left\{\mathrm{w}\left(\mathrm{x}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}=\left\{\frac{4 \mathrm{n}}{2}+7 \mathrm{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
We can see that each vertex of $P(n, k)$ receives exactly one label of weight from $W_{1} U_{2}$ and each number from $W_{1} U_{W_{2}}$ is used exactly once as a label of weight and further that the set $W=W_{1} \cup_{W}=\{a, a+d, a+2 d, \ldots . a+(2 n-1$)d $\}$, where $\mathrm{a}=\frac{n+7}{2}$ and $\mathrm{d}=4$ and finally that the induced mapping $\mathrm{g}_{\mathrm{f}}: \mathrm{V}(\mathrm{P}(\mathrm{n}, \mathrm{k})) \rightarrow \mathrm{W}$ is bijective.

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (48-52), Month: October 2015 - March 2016, Available at: www.researchpublish.com

Theorem 2

For odd $n, n \geq 3$, every generalized Petersen graph $P(n, 2)$ has a $\left(\frac{9 n+5}{2}, 2\right)$ edge-antimagic total labeling.
Proof:
Label the vertices and edges $\mathrm{P}(\mathrm{n}, 2)$
$\mathrm{g}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right), \quad \mathrm{g}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)$
$\mathrm{g}\left(\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+2}\right)= \begin{cases}\frac{(2 n-2-i)}{2} & \text { for } i \equiv 0(\bmod 2), \\ \frac{(n-2-i)}{2} & \text { for } \quad i \equiv 1(\bmod 2), i \neq n, \\ n & \text { for } i=n-2 .\end{cases}$
Case $\mathrm{n} \equiv 1(\bmod 4)$
$\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{lll}\frac{(16 n-i)}{4} & \text { for } & i \equiv 0(\bmod 4), \\ \frac{(13 n-i)}{4} & \text { for } & i \equiv 1(\bmod 4), \\ \frac{(14 n-i)}{4} & \text { for } & i \equiv 2(\bmod 4), \\ \frac{(15 n-i)}{4} & \text { for } & i \equiv 3(\bmod 4),\end{array}\right.$
$\mathrm{g}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)= \begin{cases}\frac{(18 n+2+i)}{4} & \text { for } i \equiv 0(\bmod 4), \\ \frac{(17 n+2+i)}{4} & \text { for } i \equiv 1(\bmod 4), \\ \frac{(16 n+2+i)}{4} & \text { for } i \equiv 2(\bmod 4), \\ \frac{19 n+2+i}{4} & \text { for } i \equiv 3(\bmod 4) .\end{cases}$
Case $\mathrm{n} \equiv 3(\bmod 4)$
$g\left(v_{\mathrm{i}}\right)=\left\{\begin{array}{lr}\frac{(16 n-i)}{4} & \text { for } i \equiv 0(\bmod 4), \\ \frac{(15 n-i)}{4} & \text { for } i \equiv 1(\bmod 4), \\ \frac{(14 n-i)}{4} & \text { for } i \equiv 2(\bmod 4), \\ \frac{(13 n-i)}{4} & \text { for } \quad i \equiv 3(\bmod 4),\end{array}\right.$
$\mathrm{g}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{lll}\frac{(18 n+2+i)}{} & \text { for } & i \equiv 0(\bmod 4), \\ \frac{(19 n+2+i)}{4} & \text { for } & i \equiv 1(\bmod 4), \\ \frac{(16 n+2+i)}{} & \text { for } & i \equiv 2(\bmod 4), \\ \frac{(17 n+2+i)}{4} & \text { for } & i \equiv 3(\bmod 4) .\end{array}\right.$
The edge- weight of $\mathrm{P}(\mathrm{n}, 2)$ are
$W_{g}\left(u_{i} u_{i+1}\right)=W_{f}\left(u_{i} u_{i+1}\right)$
$\mathrm{W}_{\mathrm{g}}\left(\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+2}\right)=\left\{\begin{array}{lr}\frac{(17 n-3)-i}{2} & \text { for } i \equiv 0(\bmod 2), \\ \frac{(15 n-3)-i}{2} & \text { for } i \equiv 1(\bmod 2), \\ \frac{(17 n+1)}{2} & \text { for } i=n-2,\end{array}\right.$
Case $\mathrm{n} \equiv 1(\bmod 4)$
$W_{e}\left(u_{i} V_{i}\right)=\left\{\begin{array}{c}\frac{(19 n+3 i+1)}{2} \\ \frac{(13 n+3+i)}{2} \\ \frac{(17 n+3+\varepsilon)}{2} \\ \frac{(20 n+3+i)}{2}\end{array}\right.$
for $i \equiv 0(\bmod 4)$,
for $\quad i \equiv 1(\bmod 4)$,
for $i \equiv 2(\bmod 4)$,
case $n \equiv 3(\bmod 4)$
$\mathrm{W}_{\mathrm{g}}\left(\mathrm{u}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}\right)=\left\{\begin{array}{lr}\frac{(19 m+3+i)}{2+3+i)} & \text { for } i \equiv 0(\bmod 4), \\ \frac{(120 n+3+i)}{2} & \text { for } \\ \frac{(17 \equiv 10(\bmod 4),}{2} & \text { for } \\ \frac{(18 n+3+i)}{} & \text { for } \\ & i \equiv 2(\bmod 4),\end{array}\right.$
Thus, the set of edge- weight over all edges in $P(n, 2)$ is $\{a, a+d, \ldots .,(q-1) d\}$
Where $\mathrm{a}=\frac{1}{2} \quad(9 \mathrm{n}+5)$ and $\mathrm{d}=2$.

Theorem 3:

For n odd $n \geq 5$ every generalized Petersen graph $P(n, 2)$ has a super $\left(\frac{15 n+5}{2}, 1\right)$ vertex antimagic total labeling.
Proof:
Consider the labeling h such that
$\mathrm{h}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{lr}\frac{(8 n-i)}{2} & \text { for } i \equiv 0(\bmod 2), \\ \frac{(\mathrm{Cn}-\bar{i})}{2} & \text { for } i \equiv 1(\bmod 2),\end{array}\right.$
$\mathrm{h}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}\frac{(10 n-\bar{i})}{2} & \text { for } i \equiv 0(\bmod 2), \\ \frac{(9 n-\bar{i})}{2} & \text { for } \\ & i \equiv 1(\bmod 2),\end{cases}$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (48-52), Month: October 2015 - March 2016, Available at: www.researchpublish.com
$h\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{c}2 n+1 \\ \frac{(6 n+2-\bar{i})}{2} \\ \frac{(5 n+2-\bar{i})}{2}\end{array}\right.$

$$
\begin{array}{r}
\text { for } i \equiv 0(\bmod 2), i \neq 0, \\
\text { for } \quad i \equiv 1(\bmod 2),
\end{array}
$$

$\mathrm{h}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{cc}\frac{(2+i)}{2} & \text { for } i \equiv 0(\bmod 2), \\ \frac{(\mathrm{n}+2+\mathrm{i})}{2} & \text { for } \mathrm{i} \equiv 1(\bmod 2),\end{array}\right.$
case $\mathrm{n} \equiv 1(\bmod 4)$
$h\left(v_{i} \mathrm{~V}_{\mathrm{i}+2}\right)=\left\{\begin{array}{l}n+1 \\ \frac{(5 n+4-i)}{4} \\ \frac{(6 n+4-i)}{4} \\ \frac{(7 n+4-\mathrm{i})}{4} \\ \frac{(8 n+4-\mathrm{i})}{4}\end{array}\right.$

$$
\text { for } \quad i=0 \text {, }
$$

Case $\mathrm{n} \equiv 3(\bmod 4)$

Labeling h gives vertex weight w_{h}
$w\left(u_{i}\right)=\left\{\begin{array}{l}\frac{1}{2}(17 n+3)+(2-i) \text { for } i=0,1 . \\ \frac{1}{2}(19 n+3)+\frac{1}{2}(4-2 \mathrm{i}) \text { for } \mathrm{i}=2,3 . .\end{array}\right.$
$\mathrm{w}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}\frac{1}{2} \quad(15 n+5)+\frac{1}{2}(2-i), \text { for } i=0,2, \\ \frac{1}{2} \quad(16 n+4)+\frac{1}{2}(3-i) \text { for } i=1,3,5, \\ \frac{1}{2}(17 n+4) \frac{1}{2}(4-i) \quad \text { for } i=4,6,8,\end{array}\right.$
Hence, the set of vertex- weights is $\left\{\frac{1}{2}(15 n+5), \frac{1}{2}(15 n+7) \ldots \ldots \ldots \frac{1}{n}(19 n+3)\right\}$
h is super $\left(\frac{1}{2}(15 n+5), 1\right)$ is Vertex antimagic total labeling.

4. CONCLUSION

In this paper derived the above conditions on the generalized Petersen graph. The author working in the related field with other various conditions.

REFERENCES

[1] Alspach, B., The Classification of Hamiltonian Generalized Petersen Graphs, J. Gombin. Theory 34 (Series B) (1983), 293-312.
[2] Baca, M., (a, d)-Consecutive Petersen Graphs, Acta Math. Appl. Sinica 14 (1998), 265-270.
[3] Baca, M., Consecutive -magic labeling of Generalized Petersen graphs, Utilitas Math. Submitted.
[4] Baca M, Bertault F, MacDougall J, Miller M, Simanjuntak and Slamin, vertex - antimagic total labeling of graphs Discuss Math, Graph Theory, 23 (2003) 67-83.
[5] Bannai, K., Hamilton Cycles in Geeneralized Petersen graph, J. Gombin Theory 24 (Series B) (1978), 181-188.
[6] Bodendiek, R. and Walther, G., Arithmetisch antimagische graphen, In: Wagner K. and Bodendiek, R., Graphentheorie III, BI-Wiss Verl., Mannheim, 1993.
[7] Bodendiek .R, and Walther .G, On arithmetic antimagic edge labeling of graphs Mitt. Math. Ges. Hamburg, 17 (1998) 85 - 99.
[8] Bodendiek R. and Walther G. Arithmetisch antimagische Graphen, Graphentheorie III, Wagner K. and Bodendiek R. Mannhein, 1993.
[9] JendroI,S. and Zoldak, V., The Irregularity Strength of Generalized Petersen Graphs, Math. Slovaca 45 (1995), 107-113.
[10] Mirka Miller and Martin Baca., Antimagic Valuation Of Generalized Petersen Graphs
[11] Miller M, Baca M, Antimagic valutions of generalized Petersen graphs.
[12] Sugeng K, A, Silaban D.R, Super (a,d)- vertex antimagic total labeling on disjoint union of regular graphs.

